A LQR Optimal Method to Control the Position of an Overhead Crane
نویسندگان
چکیده
Received Apr 15, 2014 Revised Jul 6, 2014 Accepted Jul 26, 2014 In this paper, a LQR (Linear Quadratic Regulation) optimal method is implemented to control position of an overhead carne. To do this, a tracking formulation of LQR is developed and applied to the system. Hence the dynamic model of the overhead crane is presented, the dynamic of the actuator motor of the trolley is considered. As the parameters of the optimal controller assigned, some simulations are done to show the efficiency of the proposed method. Keyword:
منابع مشابه
Anti-swing Fuzzy Controller Design for a 3D Overhead Crane
This paper proposes a simple but efficient technique to control 3D overhead crane. Load must track a desired path and not sway more than a reasonable range.The proposed method uses PID control for trolley to track the desired path and fuzzy control compensation to eliminate the load swing. Only the projection of swing angle is applied to design the fuzzy controller. No plant information of cran...
متن کاملAnti-swing Fuzzy Controller Design for a 3D Overhead Crane
This paper proposes a simple but efficient technique to control 3D overhead crane. Load must track a desired path and not sway more than a reasonable range.The proposed method uses PID control for trolley to track the desired path and fuzzy control compensation to eliminate the load swing. Only the projection of swing angle is applied to design the fuzzy controller. No plant information of cran...
متن کاملApplication of Independent Joint Control Strategy for Discrete-Time Servo Control of Overhead Cranes
In this study, a new servo control system is presented for the overhead crane based on discrete-time state feedback approach. It provides both robust tracking and load swing suppression. Inspired from independent joint and computed torque control in robot manipulator field, a new model is derived in which the crane actuators are considered as the main plant. The crane nonlinearities are then tr...
متن کاملTrajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV
This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...
متن کاملInnovative Control of an Overhead Crane System
Satisfactory real time control of the overhead crane facilitating fast transit (< 3s) and minimal swing (< 4°) was achieved in the x, y and z directions. Control was achieved in each individual direction using experimental modelling techniques, careful sampling frequency selection, NMSS representation and LQR controller design. To overcome non-linear model variation, a gain scheduling algorithm...
متن کامل